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SLIP LINES AT THE CORNER OF THE INTERFACIAL BOUNDARY OF DIFFERENT MEDIA* 

L.A. KIPNIS 

A symmetric problem on the initial development of a plastic wave, 
simulated by two straight slip lines starting from the apex, near the 
corner of the interfacial boundary of different media is examined under 
plane strain conditions. The exact analytical solution is constructed 
for the Wiener-Hopf functional equation of the problem. A formula is 
deduced to determine the slip line length, and their slope to the 
interfacial boundary of the media is established. 

1. We consider the problem of the initial development of the plastic zone near a corner 
0 of the interfacial boundary of media (Fig.1) under plane strain conditions in a domain 
consisting of two homogeneous isotropic parts 1 and 2 with Young's moduli and Poisson's ratios 

-% ~1 and E,, vz, respectively. The problem is assumed to be symmetrical about the 
bisectrix of the corner. It is assumed that the plastic strains are concentrated along two 
straight slip lines starting from the apex,whose length is small compared with the body dimen- 
sions. 

Using the "microscope principle", we arrive at a plane static symmetric problem of 
elasticity theory of the class N /l/ for a piecewise-homogeneous plane with interfacial bound- 
ary of the media in the form of the sides 8 = fi and 8 = p - 2a (afZ]O; id2 [U] n/2; d) of an 
angle containing slip lines for f3=0, r(l and for 8=2@-a), r<l. An asymptotic form 
is realized at infinity that is the greatest solution, at infinity, of an analogous problem 
for a piecewise-homogeneous plane without slip lines that satisfies the stress decay condition 
at infinity. The latter is constructed by the method of singular solutions /l/ and is 
determined apart from an arbitrary constant C. This constant, that characterizes the external 
field strenath. is considered aiven. It is found from the solution of the external problem. < . 

the 

the 

It is required to determine the slip line length 1 and the angle p of their slope to 
interfacial boundary of the media. 
Confining ourselves to an examination of the half-plane p-a< 8< n. - cc + b, we write 
boundary conditions thus: 

8 = B, <d = <+ = 0, <ud = <d = 0 
e = p - a, e = n - a + p, ~~~ = 0, ue = 0 

e = 0, <oe> = <GO> = 0, <ue) = 0 

e = 0, T < I, 'crB = rl; e = 0, r> 2, <u,) = 0 

(1.1) 

(4.2) 

e=o, r-+Z+O, Z,e- 
kI1 

1/2n(r - 2) 
(1.3) 

e=o, r+Z-0, <%>- - *(l&Q) I’& 
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0 - 0, r - Co, -c,g = c&p + 0 (l/r) 

PI = g,W sin h (a - fi) - 82(l) sin (h + 2)(a - p) 

&(') = (2 t x2) kh sin Zcc sin (h + 2) cz cos h (n - CL) x 

003 [h (z - a)-Z2a]+(1-~X,)(1-f~,)kcoshasinZ(h~2)a~ 

Cos A in - a) cos [h (n - a) - 2al - (1 + x1) kX sin 2a x 
Cos X0; Jill (;1 + 2) E cus (h + 2) cc + (‘J + x,> [l - x,) k x 

Co9 Act sin (I + 2) a ~09 (L + 2) cx cc6 7. (n - a) sin IX (n - o) - 
2~4 + (k - i)J.’ sin2 2a cos (L + 2) a -t_ 12 - (1 - x,)kl h sin 2a x 

Co8 (I, + 2) Py m h (n- a} sin II (IL - a) - Za] + (2k - 1 -Q. X 

sin 2= ~0s b sin (ii + 2) a cos (A,$-2)a $ 2[1 - x1 - (I - x,) kl x 
coshacos(h+2)acosh(n- a)sin[h(n--a)-_Za]sin(h~l 2)a 

&P = (1 t x&k2 sin 2a sin ha cos h (XC-~)cos Ih(rr. - a) - 2~61 + 
:i - x1) (1 + w,) kh sin ha cos hd sin (h + Z)a cas h (3~ - a) cos Ih (n - 

a) - 24 - (1 t n,)kA2 sin 2a sin ha cos hoc cos (h f 2)a -1 

(1 i x,)(1 - xa) k&sin Au cos hu,cos (h + 2)n cos h, (n - 

a) sin [A (x - a) - 2al + (k - 1) (1 - x1 - 1.)k2 sin' 2% cos ha + 

12 - (1 - x,)k] b (1 - x1 + h) sin 2a cos La.cos h (II - a) X 
sin Ih (i-c - cc) - 2al -t (2k - 1 + x1) h (L + 1 - x1) sin 2a x 

coa’ ha sin (h + Z} a + 2 Ii - K, - (1 -x,) kl(1 -x1 + h) coy’ ha X 

sin (h + 2) a ~0s h (71 - a) sin [h (n - a) - 2~~1 

(1.4) 

Here %I, %,B, m. are the stresses, ue, U, the displacements, <a) the jump in the 
quantity a, and ~~ = z,, if Cgl > 0, z1 = -zsl if $1 < 0 @,I is the shear yield point of 
material I), k[, is the stress intensity factor at the end of the slip line to be determined, 

and I is the unique root in the interval l--1; 01 for the equation 

8, = x, sin 2.m - 2 sin 2a, 6, = sin 22 (n - a) - z sin 2a 
6, = *2 sin 22 (n - cc) + 2 sin Za, pL = 1 A lCl, q2 = 1 i- xz 

Values of --hxlO' are presented in the upper part of the table for certain values of a 

and R (vv, = OXI3, v1 = 0.250). 

Fig.1 

The solution of the problem formulated is the sum of the solutions of the following two 
problems. The first differs from it by Che CacC that we have in place of the first condition 



817 

(1.2) 
8 = 0, r < 1, 7,e = z1 - cg,rx (1.5) 

and the stresses at infinity damp out as 0(1/r) (in particular, there is no first component 
in the expression for r,s in (1.4)). The second problem is the problem mentioned above for 
the picewise-homogeneous plane without slip lines. Since the solution of the second problem 
is known, it remains to construct the solution of the first. 
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2. Applying the Mellin integral transform with complex parameter p /2/ to the equilibrium 
equations, the strain compatibility condition, Hooke's law, and the conditions (l.l), and 
taking account the second condition in (1.2) and condition (1.5), we arrive at the Wiener-Hopf 
functional equation 

= CtgPsG, (P)@-(P) 

(-&I < Rep < 4 

(2.1) 

m 

a,+ (P) = s VI3 (Pk 0) PP 4% W(p) = El 
1 

4(1 S<%>I pPdfJ 
0 

g=$ 

q = -- Cg,lL,,, p1 = 1, pz = h + I, G, (p) = IA0 (p) + ‘1 ($-F(p) kp] tg f’* 

& = 6, [(&2 - 46,) 6, - 26,6,,1 

Ar = %o(~U& + 20, + q&u) -66, [6, (qlqz - 46,) - 
46,6, - q,&l, A, = -26, (6,&o + 246,) 

66 = sin 2pfJ + p sin 28, 6, = x1 sin 2pp - p sin 2g 

6, = ain2 pfi - p2 sin2 fi, 6, =x1 sin2 pfi + p2 sina fj 

% = COS 2P (o - B) - CO9 2 (a - fi), 6,, = sin 2p (a - fj) + 
p sin 2 (a - fl) 

%I = cos 2P (x - c2 + B) - CoS 2 (X - a + fi), 
B) -t p sin2(n -- a + f3) 

6,, = sin 2p (n - a + 

(% % and fairly small positive numbers). 
The function G,(it) (--CO <t< m) is a real, positive, even function of t 

las t-+oo. Therefore, the index of the function G,(p) along the imaginary 
zero and the following factorization holds /3/ 

G 1 (P) = G,+ (p)lGl- (P) (Re P = Oh exp [& 7 -!g!+] = 

G1+(p),Rep<O --im 

G,- (P), He P > 0 

By using (2.2) and the factorization 

that tends to 
axis equals 

(2.2) 
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P ctg pn = K+ (P) K- (P), K* (P) = I- (1 r P)K (‘/a T p) 

w (4 is the Gamma function), we can rewrite (2.1) thus: 

a 
Q,+(P) 1 1 

K+(P)G+ (P) + K+(P)Gr+(P) ,==1 z 

T. 
- = K-p(;;_;;;P) 
P + Pj 

(Rep = 0) 

Using the representation 

?j T. 

(p + P,) K+(P) cl+ (P) 
=I 

P + Pj [ 

1 i - fr+ (P) fh+ (P) lY+ (- Pj) ‘l+ (- Pj) 1 + 
Tj 

(p + pj) K+ (- Pj) G+ (- Pj) (Re ’ = O) 

we obtain according to (2.4) 

e 
a,+ (P) 

+/z&y !&i&1’(P) 

1 
A+ (P) G+ (P) 

-- 

j=l 
K+ (- pj) ‘I+ (- Pj) 3 = 

z 
F(P) al- (P) _ Tj 

PG- (P) ~ (P + pj) K+ (- pj) ‘I+ (- Pj) 
(Rep=U) 

(2.3) 

(2.4) 

(2.5) 

The function on the left-hand side of (2.5) is analytic in the half-plane Rep<0 while 
the function on its right-hand side is analytic in the half-plane Rep >O. On the basis of 
the principle of analytic continuation these functions equal the very same function that is 
analytic in the whole p plane. 

Using (1.3) and a theorem of Abel type 141, we find (P-S m) 

m+(p)--&-2~1, m-(p)- -k,,/l/v 

It follows from (2.2), (2.3), and (2.6) that the functions on the left and right-hand 
sides of (2.5) tend to zero as p-too in the half-planes Rep<0 and Rep>0 respectively. 
According to Liouville's theorem, a single analytic function equals zero identically in the 
whole plane p. Therefore, the solution of (2.1) has the form 

,=1 (Pt_Pj)K’(-Pj)G1’(-Pj) (Rep>0) 

m+ (PI= - K+ (P) GI+ (P) i & [ ’ 
j=l 1 K+ (P) G+ (P) - 

1 
A+ (- ~j) ‘I+ (- Pj) 1 (Rep<O) 

The stresses and displacements in the problem under consideration can be determined by 
using (2.7) and the Mellin inversion formula. 

We find from the first formula of (2.7) (p+ CW) 

I$- (p) _ p-“p 6 5 
j=i K+ (- Pj)'l+ (- Pj) 

According to (2.6) and (2.8) 

1/T&Q (h + 312) 

kll = G1+ (- h - 1) I- (h + 2) 

(2.8) 

3. We assume no stress concentration at the end of the slip line. From (2.9) we obtain 
a formula to determine the length of the slip lines 

1-D 1 c , \-l/A 
-, 
=a 

, D=[ 2 I go I r (a + Va) GI+ (- 1) -l/6 

f;r (h + 2) GI+ (- h - 1) I (3.1) 

Let us determine the direction of slip line development. According to a selection 
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principle /5/, the value fl~lO;a[, that achieves the greatest value of the velocity V,(p) 

of the dissipation energy, equal to should be taken as the angle of its slope 
0 

to the interfacial boundary of the media (the dot denotes differentiation with respect to 
time). Using (2.7) and (3.1), we obtain (the loading parameter C is considered to be a 
positive-increasing or negative-decreasing function of time) 

V,=Q~,(~)F, Q=+[ zr(X+3’z) ]-2’A v/n r (a + 2) 

w1 = ( g, (-s/h [Glf (- w2'h-2 p = (1 - VI*) ] C 1-2”-1C’sign C 

[G1+ (- a - I)]-*‘” ’ E&Slh-S 
s 

If the slip lines are in domain 2, then the initial problem reduces to the functional 

Eq.(2.1), where E,,vl in the expression for r&(p) should be replaced by 4, va, '~$1 by 

rs1 (r,, is the shear yield point of material 2), the function G, (p) by the function G,(p) 
which differs by the fact that we have lt - a, x,, xl, l/k (0 < p < n - a) respectively, in 
place of a, x1, x,, k and the function g, by the functions 

g, = g,(W sin h (n - a - fJ) + gJa) sin (h + 2)(n - a - fi), gIc2) = 

ffl? gP = ffz 

/ = (1 - x1 + h)cos ha sin (h + 2)a - hsin ha cos (h + 2) a 

II = (k - 1) h sin 2a cos [h (n - a) - 2al + (2k - 1 + x1) ~0s ha X 
sin (h + 2)a cos [h(n - a) - 2al + (1 + X,)coa h coa @ + 2) a X 

sin [h(n - cc) - 2al 

fr = h [h + 2 - k (1-xX, + h)l sin 2x cos h(n - a) -I- [(1 - x1)(& + 
2) - 2k (1 - x2 + h)l cos ha sin (h + 2) a cos h(n - cc) - (1 + x,)hX 

cos ha cos (h + 2)a sin h (n - a) 

The following formula holds for the rate of energy dissipation V,(p): 

V, = QW,* (BY, W,* (B) = W, (B) R (1 - v:)@ - v12) p-,-a’*-+, p = ~,~/q~, 

Here W, differs from W, by the fact that we have g,, G,+, respectively, in place of 

g,, G,+ (Gz+ is defined by (2.2) where G, should be replaced by G,). 
Let R>l. Investigations show that the greatest value of the function W,*(p) (0 Q fi< 

it - a) is greater than the greatest value of the function W1(p)(O < BQ a). Consequently, 
the slip lines will develop in the domain 2. 

The dependence W,(p) is shown qualitatively in Fig.2. Graphs 1-5 refer to the cases 

O<a<a,,a,,<a<a,,a,<a<nf2,nl2<a <as, as<a<n respectively fa, = z,,, (R, vIr v,), 

m = 1, 2, 3). 
Analysing the function W,(b), the following deductions can be made on the basis of the 

selection principle for the initial symmetrical problem. 

w2 

2 

5 

l!!!fLLa 

1 3 

4 

P P 

Fig.2 

Let R, vlr v2 be fixed. For U<a<a, the slip lines develop at an angle to the 
interfacial boundary of the media that decreases as a increases. For a,< a < a2 
develop along the interfacial boundary of the media. 

they 
If the case 

four slip lines start from the corner, 
a = a2 is realized, then 

media, 
two of which are on the interfacial boundary of the 

and two at an angle to it. For a, < a < n/2 and n/2< a< a, the slip lines again 
make an angle with the interfacial boundary of the media that diminishes as a 
while for 

increases, 
os<a<n they develop along it. 
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Let R grow, and Vl, va be fixed. the domain IO; a,[ of values a, for which the 
initial deviation of,the slip lines from the interfacial boundary of the media holds, dimin- 
ishes. For fixed & the angle of the initial deviation of the slip lines from the interfacial 
boundary of the media diminishes. That value of a diminishes, starting with which the slip 
lines do not deviate from the interfacial boundary of the media. 

Values of the slope of the slip lines to the interfacial boundary of the media are 
presented in degrees in the lower part of the table for certain values of a and R (vl =0.333, 
v2 = 0.250). 
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STABILITY OF MOTION OF LINEAR SYSTEMS RELATIVE TO SOME OF THE VARIABLES* 

LYAO SYAOSIN 

Using the method of Lyapunov functions, we obtain the sufficient 
conditions for asymptotic stability of linear systems with constant 
coefficients, with respect to some of the variables. 

Suppose we have a system of linear differential equations of 
constant (n x n) matrix): 

x’ = Ax; x=(Yi,..“Y,,,ZI,..‘,Zp)=(Y,Z) 

m>O, P>Oo, n-mfp 

We consider the problem of the asymptotic y-stability of the 
/l-4/. 

unperturbed motion x=0 

Let B and B, be symmetric (nx n) matrices, and let B@) (i . = 1,...,4) be matrix blocks 
of orders m x m, m XP, P x m, p x p,respectively, such that (E, denotes the (m x m) identity 
matrix) 

perturbed motion (A is a 

The quadratic form V= u(x), u(o)=o, is said to ber 1) positive semidefinite in all _ 
variables, if J(x).0 for all IIx)I<w /5/; 2) y-positive semidefinite if u(n)>a(IIyII) for 
all [IX [/<CC /2/, where a(r) is a continuous and monotone increasing function of r~[O,a;), 
a (0) ?z 0. 
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